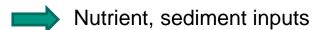


Multidisciplinary Data Acquisition as Key for a Globally Applicable Water Resource Management

Midterm Workshop 2019, Frankfurt

This project is sponsored by the Federal Ministry of Education and Research (BMBF) as part of the funding measure "Water as a Global Resource" (GRoW).

Motivation and Initial Situation

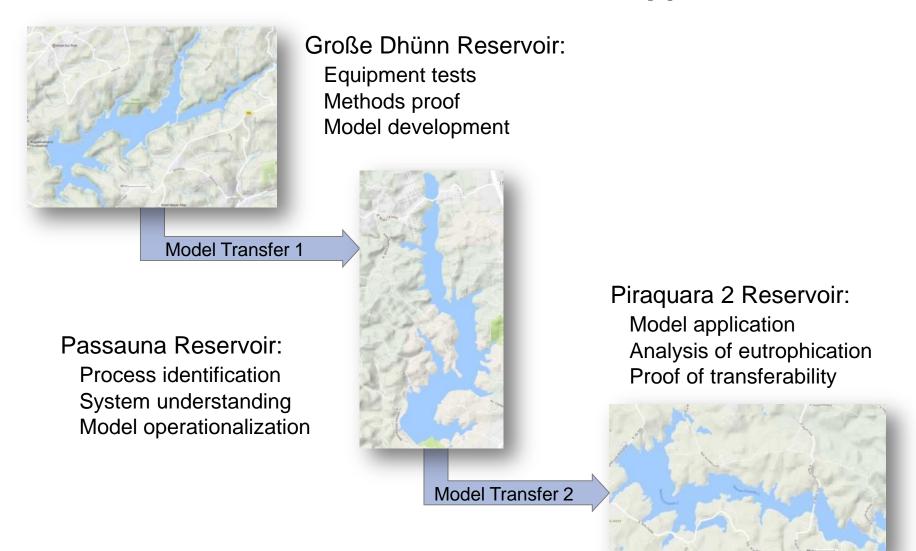


Land use changes and reservoir quality are intrinsically linked

- Numerous powerful models for terrestric and aquatic ecosystems are available
- In most cases the models are complex and data demanding
- Adaptation to specific questions is often complicated
- Availability of input and validation data is generally limited
- Representation of local to regional characteristics is restricted

MuDak-WRM - S. Fuchs

Goals and Needs



- Implementation of overall applicable model tools
 - **Simplicity**: reduction of model complexity and data demand, use of remote sensing data
 - **Flexibility**: modifiable input data, resolution and calculation algorithms
 - **Transparency**: Complete documentation
- Definition of minimum monitoring strategies
 - **Boundary conditions:** catchment characteristics and development
 - **Key parameter:** determining the long-term system status

- Clear problem statement
- Profound understanding of key processes
- Accurate identification of key parameters

Three Reservoirs, Three Focus Areas - Approach

13/03/2019

Activities and Progress

- Monitoring
 - Two campaigns in Germany
 - Four extensive campaigns in Brazil
 - Monthly monitoring
- Workshops
 - Two status workshops in Germany and Brazil
 - Two user workshops in Brazil (Sensorweb, data management)
- Communication
 - Regular Tele-conferences (monthly)
 - Skype meetings on demand
- Formalized Co-operations
 - MOU with Sanpepar
 - MOU with UFPR
 - MOU with The Nature Conservancy

Activities

Kick Off Meeting, Nov 2017

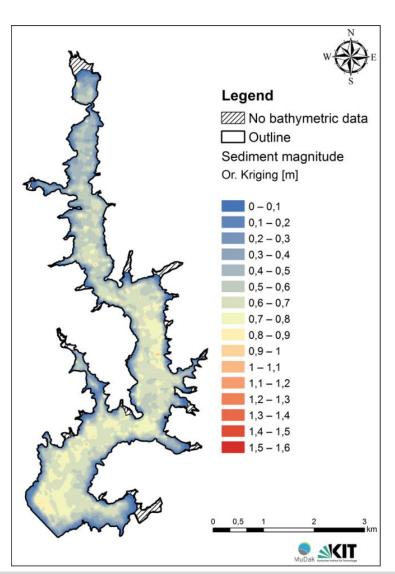
Midterm Meeting, Feb 2019

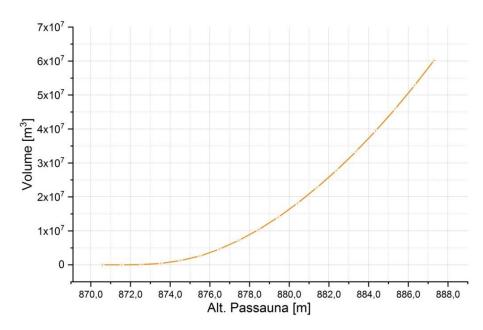
More than 60 participants during the Workshops

17 PhD students actively involved in MuDak

Results & Products

- Data acquisition completed
 - One year of high resolution water quality measurements in Passauna reservoir
 - More than one year of continuous sediment transport measurements
 - Installation of water quality sensors (Nitrate, Chlorophyll-a, CDOM and Cyanobacteria)
- Models (LARSIM, MoRE, Delft 3D) are running and ready for simplification and scenario testing
- Sensorweb online (secure access) for Große Dhünn and Passauna Reservoir (extra talk tomorrow during the Breakout Session)

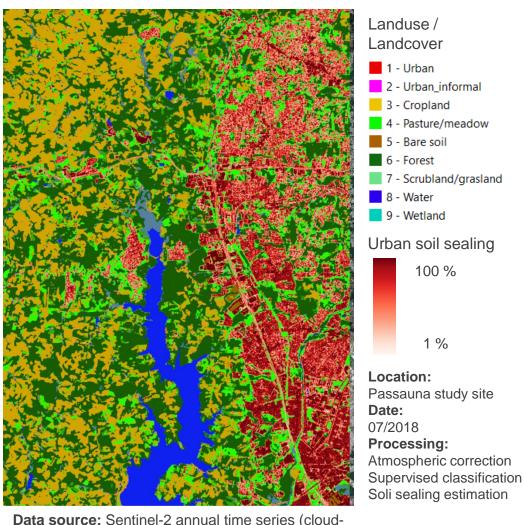

MuDak-WRM - S. Fuchs



Sediment Accumulation (IWG-SWW)

New depth – volume curve for the operator

3.7 hm³ volume loss in 30 years ~ 6 % of the initial volume


(conservative estimation without silted buffer parts and based on echo-data)

Remote Sensing and Modeling (EFTAS)

- Landuse / Landcover (LULC) Available (refinement in progress)
- Urban soil sealing Available (refinement in progress)
- Leaf Area Index (LAI) Available (refinement in progress)
- Surface Albedo Available (refinement in progress)
- Soil moisture Research in progress
- Chlorophyll and Turbidity Research in progress

MuDak-WRM - S. Fuchs

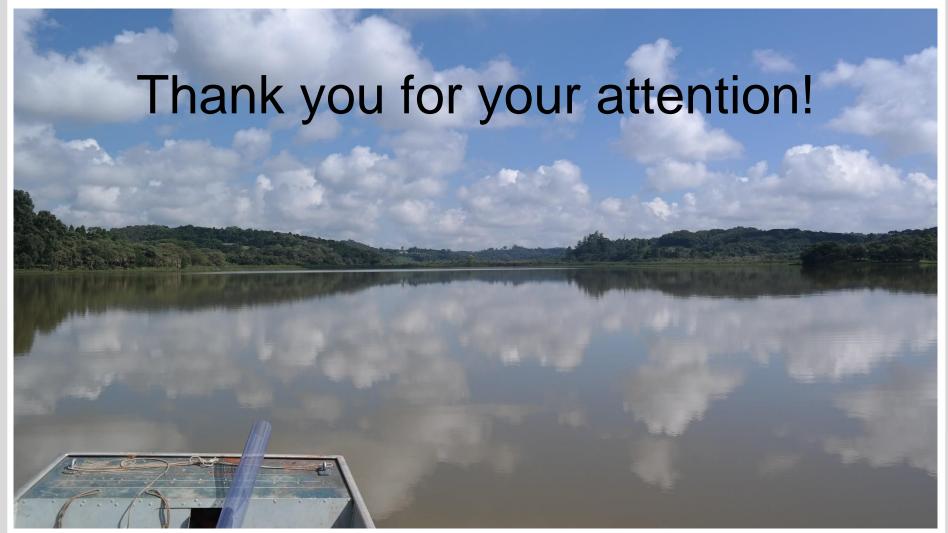
free selection)

Water Balance Modelling (HYDRON)

- Setup and successful validation of:
 - State of the art water balance model for Große Dhünn (→ benchmark model)
 - Model of reduced complexity adapted to data availability for Passaúna
- Model outputs:
 - Discharge (water availability for reservoirs)
 - Spatially distributed runoff generation within the watersheds (→diffuse emission of nutrients)
 - River water temperatures (Passaúna)
- Proof of model transferability (for Passaúna):

MuDak-WRM - S. Fuchs

- Parameterization of evapotranspiration with globally available remote sensing data
- Land use / land cover based on global available data
- Simplified parameterization of soil, using adequate Pedo-Transfer-Functions


Outlook

- Step wise simplification of the models
 - → Excluding irrelevant parts, reducing data demands / temporal resolution
- Breaking down of the major findings for the management
 - → Data integration and aggregation
 - → Transfer to the reservoir operators
- Objectives & roadmap for 2019
 - Readjust the planning, if necessary
 - **Adapted models**
 - **Minimum-monitoring strategies**
 - Relevant management questions
- Future collaborations/projects
 - Extending to large scale application in Paraná; creation of a fully integrated Sensorweb
 - Modeling of land develop scenarios for different reservoirs
 - Transfer of the tools to other regions

