

Monitoring Passauna's reservoir water quality

Water quality monitoring with field measurements, laboratory analysis, and initial investigations.

Context

Monitoring physical and chemical parameters are important to characterize the reservoir in terms of water quality and hydrodynamic behavior.

Objectives/Goals

- Evaluate Passaúna's reservoir water quality dynamics
- Identify the spatial and temporal variability of Passaúna's reservoir WQ through monthly measurements
- Perfom different analysis to assess the overall interactions between physical, chemical and biological parameters.

Methods and Equipments

Chemical analyses included Nitrogen (Nitrate, Nitrite, Total Ammoniacal Nitrogen, Total Nitrogen), Phosphorus (Orthophosphate, Particulate Phosphorus, Total and Dissolved Phosphorus), Solids (Total Suspended and Dissolved Solids), Chlorophyll-a and Dissolved Organic Carbon (DOC). A summary of field caimpaings are shown in the following Table.

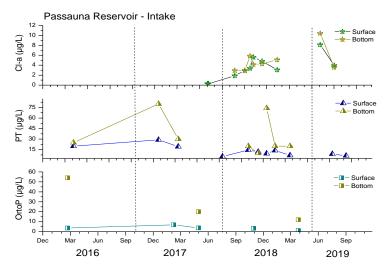

Campaigns	Inflow	Buffer	Ferraria Bridge	РРА	Park	Reservoir center	Intake	Dam	Outflow
2018, February	0	0	0	0	0	o	o	0	0
2018, April (03)	0						o		0
2018, April (24)							0		
2018, May	0						o		0
2018, June	0						0		0
2018, July									
2018, August	0	0	o	0	0	0	0	0	0
2018, October	0	0	o	0			o		0
2018, November	0	o	o	0			0		0
2018, December	o	o	o	0			o		0
2019, January									
2019, February	o	o	o	0	0	o	o	0	o
2019, March									
2019, April	0		o	0			o		0

Table 1: Summary of fiel campaings [2018-2019]

Preliminary Results

- Probable phosphorus retention/assimilation (lower concentrations at outflow while higher concentrations of nitrogen are observed)
- Higher concentrations of TP and TN at inflow and probable retention at buffer region
- Ocurrence of DO decay at bottom layers and concequently changes in gas flux and in phosphorous availability in bottom layers

Figure 1: Variation of chlorophyll-a, total phosphorous and orthophosphate at intake [2016-2019]

Innovation/Outlook/Insights

- Low concentrations in overall parameters analyzed (different approaches for laboratory analysis)
- ➢ Differences at inflow→reservoir → outflow: probable assimilation/retention/decay
- Data base for sensors calibration/validation and water quality modeling

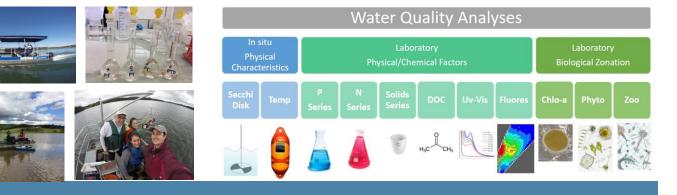


Figure 2: Variation of chlorophyll-a, total phosphorous and total nitrogen in different monitoring sites [2018-2019]

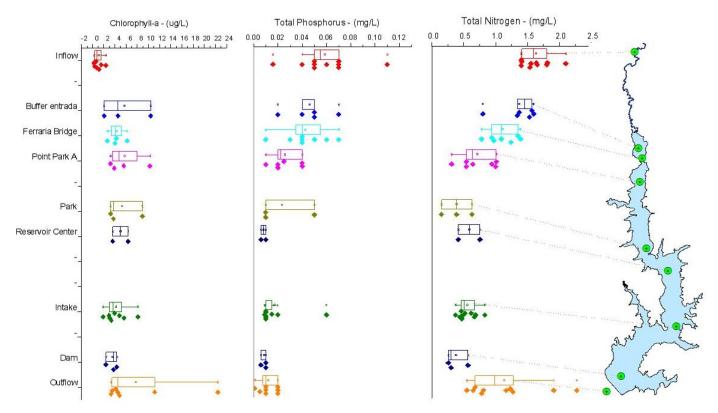
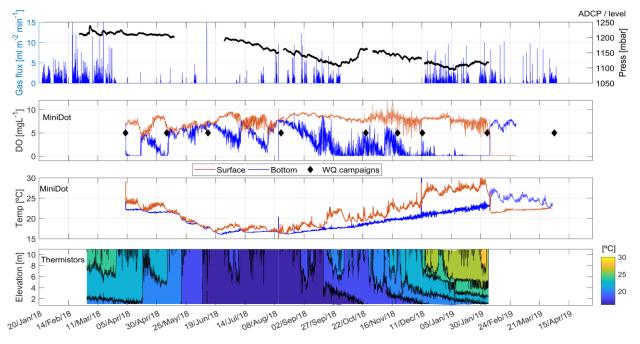



Figure 3: Variation of dissolved oxygen, temperature and gas flux at inlet monitoring site [2018-2019]

Authors Gurski, L.; Marcon, L.; Knappik, H.; Prado, L. Contact luzi.kotsuka@gmail.com / heloise.dhs@ufpr.br Funded by Federal Ministry of Education and Research, BMBF Web www.mudak-wrm.kit.edu U N I V E R S I T Ä T KOBLENZ · LANDAU 52north 53 UFPR exploring horizons FUNDACÃO WUPPERVERBAND <u>ΛRΛUCΛRIΛ</u> UNIVERSIDADE AGUASPARANÁ

SA

IEPAR

POSITIVO

CAPES

INSTITUTO PARANAENSE DE ASSISTÊNCIA TÉCNICA E EXTENSÃO RURA