

DOM: sources, variability and insights

Evaluation of dissolved organic matter occurrence, spatial and temporal variability through spectroscopic analysis and chlorophyll-a.

Context

Dissolved organic matter (DOM) qualitative and quantitative analyzes allow a better understanding of water quality dynamics in a reservoir.

Objectives/Goals

- > Identify DOM sources, variability and decay
- > Evaluate DOM spatial and temporal variability
- Identify algae occurrence and variability throught space, time and depth.

Methods

Dissolved organic carbon	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Organic matter characterizatioin	 Emission-excitation fluorescence and uv-vis absorbance spectroscopy techniques. Small sample volume (10 mL), membrane filtration (0,45 μm). Data treatment required for peaks identification (DOM classification).
Chlorophyll- <i>a</i>	 3 L sample collection, dark mantainance and same day filtration. Pigment extraction through 90% ace- tone with GF/C filters. Absorbance measured at three wave- lengths (664, 665, and 750 nm).

Results

- Differentiation between labile and refractory organic matter.
- Ocurrence of algae and primary production throught the reservoir.
- Probable algae death and sedimentation (bottom labile DOM)

Left : Image of Passaúna's Reservoir during a field trip (August/2018).

Right : Example excitationemission matrix (EEM) and the identification of peaks related to different organic matter characteristics (labile and refractory).

Surface

Chlorophyll-a (ug/L)

6 8 10

12

Figure 1: Variation of fluorescence peaks intensity for Inflow, Inlet and Outlet [Passaúna 20-18 -2019]

 Predominance of refractory compounds at Inflow (indicating pedogenic material loading) and at Outflow (humic substances from bottom layers of the reservoir)

Figure 2: Variation of peaks intensity for Inlet [Passaúna 20-18-2019] in different depths

 ✓ Evidence of autochthonous production in the photic zone (higher intensity and variation of peaks T1 and T2, and presence of algae (higher concentration of chlorophyll-a)

tom layers of the Figure 2: Variation of [Passaúna 20–18–2019] in Peak A - Refractory compounds (r.u.) Peak

 \checkmark Predominance of refractory compounds during the storm event (indicating pedogenic material loading) at Inflow.

Figure 4: Occurrence of algae at Passaúna's Reservoir

Authors

Knapik, H.; Gurski, L.; Barreto, N.; Oliveira, J.

Innovation/Outlook

- Rapid organic matter sources identification \checkmark (allochthonous x autochthonous x antropogenic).
- Improved information for reservoirs's opera-~ tin and management (DOM x algae occurrence x taste and odour in water).
- Potential use of DOM characteristics for in-1 situ probes calibration.

helogk@gmail.com / heloise.dhs@ufpr.br

Contact

Web